Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Carbohydr Polym ; 331: 121878, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38388061

RESUMEN

Pectins are a class of soluble polysaccharides that can have anticancer properties through several mechanisms. This study aimed to characterize the molecular structure of water-soluble fractions (WSF) derived from ripe and unripe papayas and assess their biological effects in two models: the 3D colon cancer spheroids to measure cell viability and cytotoxicity, and the in vivo model to investigate the inhibition of preneoplastic lesions in rats. WSF yield was slightly higher in ripe papaya, and both samples mainly consisted of pectin. Both pectins inhibited the growth of colon cancer HT29 and HCT116 spheroids. Unripe pectin disturbed HT29/NIH3T3 spheroid formation, decreased HCT116 spheroid viability, and increased spheroid cytotoxicity. Ripe pectin had a more substantial effect on the reduction of spheroid viability for HT29 spheroids. Furthermore, in vivo experiments on a rat model revealed a decrease in aberrant crypt foci (ACF) formation for both pectins and increased apoptosis in colonocytes for ripe papaya pectins. The results suggest potential anticancer properties of papaya pectin, with ripe pectin showing a higher potency.


Asunto(s)
Carica , Neoplasias del Colon , Ratas , Animales , Ratones , Pectinas/farmacología , Pectinas/química , Carica/química , Células 3T3 NIH , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Proliferación Celular , Colon
2.
Int J Biol Macromol ; 260(Pt 1): 129153, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228198

RESUMEN

This study explores the sustainable utilization of wastes from a papaya plant (papaya peels (PP), papaya seeds (PS), leaf-stem (PL)) and dried green tea residues (GTR) for the synthesis of bioplastics. The dried GTR were individually blended with each papaya waste extract and then boiled in water to get three composite papaya plant waste-green tea supernatants. Potato starch and gelatin-based functional films were prepared by integrating each with the composite papaya waste-green tea supernatant liquid. This work introduces a dissolved organic matter (DOM) study to the field of bioplastics, with the goal of identifying the organic components and macromolecules inherent in the PW supernatants. When compared with the films prepared solely from papaya waste (PW) supernatants, PW-GTR composite supernatant films prevent UV light transmission with superior antioxidant and mechanical properties. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction spectroscopy (XRD), and atomic force microscopy (AFM) were utilized to characterize the starch and gelatin PW-GTR films. Owing to the exceptional antioxidant, UV barrier, and remarkable biodegradable properties of the starch/PW/GTR and gelatin/PW/GTR composite films, make them ideal for use in food packaging applications.


Asunto(s)
Carica , Embalaje de Alimentos , Embalaje de Alimentos/métodos , Gelatina/química , Antioxidantes/química , Té/química , Almidón/química , Espectroscopía Infrarroja por Transformada de Fourier
3.
BMC Complement Med Ther ; 24(1): 18, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172797

RESUMEN

Prediabetes is characterized by a cluster of glycemic parameters higher than normal but below the threshold of type 2 diabetes mellitus (T2DM). In recent years, phytochemical-rich plant extracts have gained popularity as therapeutic agents for metabolic disorders. This study investigated the effects of papaya leaf (PL) juice supplementation on blood glucose levels in diet-induced obese and prediabetic adult mice. B65JL F1 mice (n = 20) at 12-14 months old were fed a high fat/sugar diet (HFHS) for 120 days. Mice were switched to restricted rodent chow of 3 g feed/30 g body weight/day, supplemented with 3 g/100 mL PL juice for 30 days. HFHS diet remarkably increased fasting plasma glucose levels from 114 ± 6.54 mg/dL to 192.7 ± 10.1 mg/dL and body weight from 32.5 ± 1.6 to 50.3 ± 4.1 g. HFHS diet results in hyperglycemia, insulin resistance, hyperlipidemia, and liver steatosis. The combination of PL juice and restricted diet significantly reduced body weight and fasting blood glucose levels to 43.75 ± 1.4 g and 126.25 ± 3.2 mg/dl, respectively. Moreover, PL juice with a restricted diet significantly improved lipid profile: cholesterol from 204 to 150 mg/dL, LDL-c from 110.4 to 50 mg/dL, and triglyceride from 93.7 to 60 mg/dL. Additionally, PL juice combined with a restricted diet significantly reduced adiposity, reversed fatty liver, and restored skeletal muscle Glut4 and phosphorylated (p-AKT (ser473). This study demonstrated that supplementation of PL juice with a restricted diet was more effective than a restricted diet alone in reversing major symptoms related to prediabetic and obesity conditions.


Asunto(s)
Carica , Diabetes Mellitus Tipo 2 , Hígado Graso , Estado Prediabético , Ratones , Animales , Azúcares/uso terapéutico , Carica/metabolismo , Glucemia/metabolismo , Estado Prediabético/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Hígado Graso/tratamiento farmacológico , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Homeostasis , Hojas de la Planta
4.
J Food Sci ; 89(2): 1114-1126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38161280

RESUMEN

Papaya postharvest management using low-temperature storage is discouraged as it is a tropical fruit. Extensive research is going on to preserve papaya quality at ambient storage using edible coatings and its composites. The present investigation examined the effects of an eco-safe composite edible coating consisting of hydrocolloid carboxymethyl cellulose (CMC) (1%), guar gum (1.5%), xanthan gum (0.3%), and Gum Arabic (10%) combined with papaya leaf extract (PLE) (1:1 ratio by volume) applied as dip treatment on "Red Lady" papaya fruit at ambient storage condition. Among all the attempted treatments, "PLE incorporated with CMC (1%)" was found to be the best, as the treated fruit exhibited the highest levels of biochemicals, whereas the lowest levels of physiological and enzymatic activity, which positively affected the shelf life. The "CMC + PLE" treatment enhanced the fruit gloss score by 70.1%, phenolics by 6.1%, ascorbic acid by 22.3%, total carotenoid content by 7.4%, and fruit predilection score by 22.0% over the control fruit. However, it lowered (controlling) the physiological loss in weight by 51.0%, decay incidence by 66.6%, and polygalacturonase and pectin methylesterase activity by 24.92% and 35.29%, respectively, over control. Moreover, this treatment exhibited the highest fruit purchase predilection score and prolonged the storage life for >3 days on the physiological loss standard basis (≤10%). This study indicates that "CMC (1%) with PLE (1:1)" composite coating application on papaya under ambient conditions might be an effective, environmentally friendly, and health-friendly way to retain the quality and extend the storage life.


Asunto(s)
Carica , Películas Comestibles , Humanos , Conservación de Alimentos , Frutas/química , Extractos Vegetales/análisis
5.
Bioprocess Biosyst Eng ; 47(1): 65-74, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38086975

RESUMEN

This study describes an effective and eco-friendly approach to the synthesis of zinc oxide nanoparticles (ZnONPs) utilizing papaya fruit peel extract (PPE). The structural evaluation and morphological features of synthesized ZnONPs were examined using various physicochemical analyses. The formulated ZnONPs were spherical to hexagonal in shape with ⁓ 170 nm in diameter. ZnONPs exhibited improved antioxidant potential in terms of DPPH radical scavenging activity (IC50 = 98.74 µg/ml) and ferric-reducing potential compared with PPE. The antibacterial activity of ZnONPs was measured against pathogenic strains of Salmonella typhi, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. The biosynthesized ZnONPs showed potential antibacterial efficacy against all microbes. In addition, ZnONPs exhibited potential photocatalytic activity in rhodamine B degradation in the presence of sunlight. The results indicated that papaya peels, which are these fruit wastes, could be helpful for the green synthesis of ZnONPs with good dose-responsive antioxidant, antibacterial, and photocatalytic activities.


Asunto(s)
Carica , Nanopartículas del Metal , Óxido de Zinc , Antioxidantes/farmacología , Óxido de Zinc/farmacología , Óxido de Zinc/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli , Extractos Vegetales/química
6.
Mol Neurobiol ; 61(1): 450-464, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37626269

RESUMEN

Mild cognitive impairment (MCI) is defined as inter-stage between normal cognitive aging and major neurocognitive disorder (MND). This state of decay is a crucial factor in treatment to prevent the progression to MND. In this study, our group developed a virtual screening process to evaluate 2568 phytochemical compounds against 5 key proteins associated with MCI and MND. As a result, two potential candidates were identified: carpaine, found in Carica papaya leaves, and punicalagin, present in Punica granatum. A model of cognitive impairment (CI) was developed in 10-month-old male Sprague Dawley rats by administering aluminum chloride (AlCl3) at a dose of 100 mg/kg/day for 30 days. After AlCl3 administration period, one of the groups received carpaine and punicalagin in a phytochemical extract (PE) by oral gavage for 30 days. Novel object recognition test (NOR) was assessed at three different time points (T1 - before CI, T2 - after CI, and T3 - after PE treatment). Glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were identified in the hippocampus of rats at the end of the study period. After administration of AlCl3, a reduction in discrimination index vs control rats (CI = 0.012 ± 0.08 vs Control = 0.076 ± 0.03), was observed. After phytochemical extract treatment, a significant increase in discrimination index values was observed in the PE group 0.4643 ± 0.13 vs CI group 0.012 ± 0.08. Additionally, the evaluation of immunohistochemistry showed an increase in GFAP positivity in the hippocampus of the CI groups, while a slight decrease was observed in the PE group. This work addressed a comprehensive methodology that utilized in silico tools to identify phytochemical compounds (carpaine and punicalagin) as potential candidates for affecting key proteins in CI. The phytochemical extract containing carpaine and punicalagin resulted in a trend in the decrease of GFAP expression in the hippocampus and improved recognition memory in rats with CI induced by age and AlCl3 administration.


Asunto(s)
Carica , Disfunción Cognitiva , Taninos Hidrolizables , Granada (Fruta) , Ratones , Ratas , Masculino , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Carica/química , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Disfunción Cognitiva/tratamiento farmacológico , Fitoquímicos , Semillas
7.
J Cosmet Dermatol ; 23(3): 1045-1054, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38050657

RESUMEN

OBJECTIVE: The current study aimed to provide preliminary insights into potential biopharmaceutical applications of Carica papaya seed extract by evaluating its phytochemical and biological profiles. Furthermore, the study aimed to develop a stable oil-in-water (O/W) emulsion for the effective delivery of antioxidant-rich biologicals for cosmetic purposes. METHODS: The hydroethanolic (ethanol 80%: 20% water) extract of C. papaya seeds was prepared via maceration technique. The chemical composition was carried out through preliminary phytochemical screening and estimation of total phenolic contents (TPC) and total flavonoid contents (TFC). The biological profile of the extract was explored using various in-vitro antioxidant methods. The homogenization procedure was used to create a cream of O/W and various tests were applied to assess the stability of the emulsion. By keeping the emulsion at different storage conditions (8 ± 0.5°C, 25 ± 0.5°C, 40 ± 0.5°C, and 40 ± 0.5°C ± 75% relative humidity [RH]) for a period of 28 days), the physical stability parameters of the emulsion, including pH, viscosity, centrifugation, phase separation, and conductivity, as well as rheological parameters and organoleptic parameters (odor, color, liquefaction, and creaming), were assessed. RESULTS: The preliminary phytochemical screening assay revealed the presence of various plant secondary metabolites including alkaloids, phenolics, flavonoids, tannins, saponins, and quinones. The extract was found to be rich in TPC and TFC. The in vitro antioxidant study gave maximum activity in the DPPH method. The plant extract containing cosmetic cream exhibited remarkable stability during the entire research. Data gathered indicated that no phase separation or liquefaction was seen after the experimental period. Throughout the experimental period, a small variation in the pH and conductivity values of the base and formulation was seen. CONCLUSION: The findings suggest that the seed extract of C. papaya is a rich source of polyphenols with antioxidant potential and can be a promising alternative for the treatment of various ailments. The stability of emulsion paves the way for its utilization as a carrier for the delivery of 3% C. papaya seed extract and applications in cosmetics products.


Asunto(s)
Productos Biológicos , Carica , Humanos , Antioxidantes , Emulsiones , Emolientes , Flavonoides , Fitoquímicos , Extractos Vegetales/farmacología , Agua
8.
Colloids Surf B Biointerfaces ; 234: 113712, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38157762

RESUMEN

In the present study, a film based on the gelatin skin of tilapia (Oreochromis niloticus) was developed, using surfactants and adding plant extract of pitomba seed (Talisia esculenta). The aim was to investigate the mechanical and barrier properties of the cover, as well as its effectiveness in conserving papayas against diseases caused by fungi. The film presented tensile strength of 38.78 MPa, elongation of 120.49%, and water vapor permeability of 5.90 g.mm.h-1.m2.kPa-1 when equally composed of SDS and Tween 80, in a percentage of 40% in relation to the total mass of the film. The films lasted 12 d in an environment with a relative humidity of 75% (25 ºC), longer than the shelf life of papaya (limited to 8 d). With applying the film with the extract, the incidence of diseases such as anthracnose, fusariosis, and stem rot caused by these microorganisms in papaya was reduced.


Asunto(s)
Carica , Cíclidos , Sapindaceae , Tilapia , Animales , Gelatina , Extractos Vegetales , Hawaii , Resistencia a la Tracción , Permeabilidad , Embalaje de Alimentos
9.
Environ Sci Pollut Res Int ; 30(51): 111511-111524, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37815681

RESUMEN

Maintaining a robust immune system and safeguarding the liver from toxins are crucial for overall health. The study aimed to investigate the immunostimulant effects of papaya seed-enriched cakes (CPS) in countering carbon tetrachloride (CCl4)-induced immunocytotoxicity in rats (n = 48). The rats were divided into six groups (8 each): a control group (Group 1), rats fed cakes containing 15% papaya seeds (Group 2 - CPS), rats exposed only to CCl4 (Group 3 - CCl4), rats injected with CCl4 and administered silymarin (Group 4 - CCl4 + S), rats receiving both CCl4 and cakes with papaya seeds (Group 5 - CCl4 + CPS), and rats receiving both CCl4 and silymarin with papaya seed-enriched cakes (Group 6 - CCl4 + CPS + S). HPLC analysis of papaya seeds revealed the presence of ten polyphenol compounds, with quercetin, apigenin, and catechin identified as major flavonoids, along with pyrogallol, ellagic, and gallic acid as predominant phenolic acids. These compounds displayed potent antioxidant activity, attributed to the seeds' high total phenolic and flavonoid content. The administration of CCl4 significantly affected hematological parameters, liver enzymes, hepatic oxidative stress, levels of TNF-α, IL-6, IgG, as well as IgM. However, rats fed with CPS exhibited mitigation of CCl4-induced toxic effects on hematological parameters and hepatotoxicity. CPS consumption enhanced the antioxidant system, improved inflammatory markers, and immune parameters, restoring them to normal levels. Histopathological analysis confirmed CPS's ability to reduce CCl4-induced hepatocellular necrosis. Immunohistochemical assessment further revealed reduced immunoreactivity against cleaved caspase-3 expression and increased COX2 immunoreactivity, indicating hepatocellular regeneration in CPS. The combination of CPS and silymarin demonstrated even more notable improvements, suggesting augmented protective impacts against CCl4-induced immunosuppression and hepatotoxicity. In conclusion, CPS exhibited antioxidant properties and effectively protected against CCl4-induced immunotoxicity and hepatotoxicity, with additional benefits observed when combined with silymarin. These findings emphasize the potential health advantages of incorporating papaya seeds into food products, promoting immune system health, and safeguarding against liver damage induced by hazardous agents like CCl4.


Asunto(s)
Carica , Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatopatías , Silimarina , Ratas , Animales , Antioxidantes/metabolismo , Carica/metabolismo , Extractos Vegetales/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado , Hepatopatías/metabolismo , Silimarina/metabolismo , Estrés Oxidativo , Flavonoides/farmacología , Semillas/química , Tetracloruro de Carbono/toxicidad
10.
Methods Mol Biol ; 2967: 17-30, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37608099

RESUMEN

Authentication of herbal products and spices is experiencing a resurgence using DNA-based molecular tools, mainly species-specific assays and DNA barcoding. However, poor DNA quality and quantity are the major demerits of conventional PCR and real-time quantitative PCR (qPCR), as herbal products and spices are highly enriched in secondary metabolites such as polyphenolic compounds. The third-generation digital PCR (dPCR) technology is a highly sensitive, accurate, and reliable method to detect target DNA molecules as it is less affected by PCR inhibiting secondary metabolites due to nanopartitions. Therefore, it can be certainly used for the detection of adulteration in herbal formulations. In dPCR, extracted DNA is subjected to get amplification in nanopartitions using target gene primers, the EvaGreen master mix, or fluorescently labeled targeted gene-specific probes. Here, we describe the detection of Carica papaya (CP) adulteration in Piper nigrum (PN) products using species-specific primers. We observed an increase in fluorescence signal as the concentration of target DNA increased in PN-CP blended formulations (mock controls). Using species-specific primers, we successfully demonstrated the use of dPCR in the authentication of medicinal botanicals.


Asunto(s)
Carica , Especias , Reacción en Cadena en Tiempo Real de la Polimerasa , Cartilla de ADN/genética , Bioensayo
11.
BMC Complement Med Ther ; 23(1): 271, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516866

RESUMEN

BACKGROUND: Since cancer is one of the most prevalent diseases in the world, further studies are needed to identify the effective therapeutic modalities. The second deadliest and third most common cancer is colorectal cancer (CRC). Papaya (Carica papaya Linn) seeds offer anti-cancer properties that can cure various types of cancer, such as liver and prostate cancer. METHODS: The study aimed to evaluate the anti-cancer activity of Carica papaya seed extract on colorectal cancer cell lines (Caco-2) and used techniques to assess the anti-cancer potential. The effectiveness of SE on cell proliferation and the viability of HTB-37 Caco-2 and C-166 cells were assessed using the MTT test. Real-time RT-PCR was used to measure gene expression levels and evaluate the activity of genes involved in apoptosis, including caspase-3, p53, Cycs, and Bcl-2. Finally, flow cytometry was used to analyze apoptosis induction by detecting changes in cell morphology and DNA content. RESULTS: The study showed that the MTT reduction assay was dependent on cancer cell type and concentration of SE compared to the control cells and C-166, with a mean IC50 value of 9.734 ug/ml. The cytotoxicity was accompanied by some morphological alterations in the colorectal cancer cell line (Caco-2). The expression of the genes for p53, Cycs, and caspase-3 was substantially up-regulated, while Bcl-2 was dramatically down-regulated compared to control cells. The cell cycle arrested at the G2-M phase and the presence of early and late apoptotic characteristics post-treatment increased the apoptotic profile. CONCLUSION: It concluded that papaya seeds aqueous extract could act as a novel therapeutic option for colorectal cancer (CRC).


Asunto(s)
Carica , Neoplasias del Colon , Masculino , Humanos , Caspasa 3 , Células CACO-2 , Proteína p53 Supresora de Tumor , Neoplasias del Colon/tratamiento farmacológico , Extractos Vegetales/farmacología
12.
Infect Immun ; 91(7): e0051722, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37341599

RESUMEN

Parasitic diseases are a major public health problem worldwide. Plant-derived products appear to be ideal candidates from a biotechnological perspective, being sustainable and environmentally friendly. The antiparasitic properties of Carica papaya have been attributed to some of its components, including papain and other compounds that are concentrated in the latex and seeds. This study demonstrated in vitro a high and insignificantly different cysticidal activity of soluble extract that was obtained after the disruption of nontransformed wild-type (WT) cells as well as transformed papaya calluses (PC-9, PC-12, and PC-23) and papaya cell suspensions (CS-9, CS-12, and CS-23). In vivo, cell suspensions of CS-WT and CS-23 that had been previously lyophilized were tested with respect to their cysticidal effects, compared with those of three commercial antiparasitic drugs. CS-WT and CS-23 together reduced the number of cysticerci, the number of buds, and the percentage of calcified cysticerci in a similar extent to albendazole and niclosamide, whereas ivermectin was less effective. Mice were then orally immunized with CS-23 that expressed the anti-cysticercal KETc7 antigen (10 µg/mouse), CS-WT (10 mg/mouse), or both together to evaluate their preventive properties. CS-23 and CS-WT significantly reduced the expected parasite and increased the percentage of calcified cysticerci as well as recovery, being more effective when employed together. The results reported in this study support the feasibility of the development of an anti-cysticercosis vaccine from cells of C. papaya in in vitro cultures, as they are a source of an anthelmintic, natural, and reproducible product.


Asunto(s)
Carica , Ratones , Animales , Suspensiones , Albendazol , Extractos Vegetales/farmacología , Semillas
13.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047820

RESUMEN

Studies from laboratory animal models and complementary medical practices have implied that nutrients from special plants or herbs contain antidiabetic, antioxidant, anti-obese, anti-hypertensive, and anti-inflammatory properties. Seaweed and tropical papaya, which are widely available in Asian and Pacific countries, have been used as home remedies for centuries. The bioactive extracts from these plants contain vitamins A, C, B and E complexes, as well as polysaccharides, phenolic compounds, essential fatty acids, flavonoids, saponins, fucoidan, and phlorotannin. In this review, the authors examine the pathogenesis of diabetes characterized by hyperglycemia due to the dysregulation of glucose homeostasis, antidiabetic/antihyperglycemic seaweed or/and papaya derived bioactive phytochemicals and their proposed mechanisms of action in the management of Type 2 Diabetes Mellitus (T2DM). The authors also propose combining papaya and seaweed to enhance their antidiabetic effects, leveraging the advantages of herb-to-herb combination. Papaya and seaweed have demonstrated antidiabetic effects through in vitro assays, cellular models, and animal studies despite the limited clinical trials. Nutraceuticals with antidiabetic effects, such as secondary metabolites isolated from seaweed and papaya, could be combined for a synergistic effect on T2DM management. However, the application of these compounds in their purified or mixed forms require further scientific studies to evaluate their efficacy against diabetes-related complications, such as hyperlipidemia, elevated free radicals, pro-inflammatory molecules, insulin insensitivity, and the degeneration of pancreatic beta cells.


Asunto(s)
Carica , Diabetes Mellitus Tipo 2 , Algas Marinas , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Carica/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Suplementos Dietéticos , Hojas de la Planta , Glucosa/análisis
14.
Nutrients ; 15(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37111148

RESUMEN

Obesity and diabetes, often characterized as "metabolic syndrome", have been recognized as two of the most important public health issues worldwide. The objective of the present research was to evaluate green and yellow papaya for anti-oxidation and anti-diabetic properties. Leaves, skin, pulp, and seed samples from papayas were freeze-dried and then extracted in water or 80% methanol. The extracts were used to determine total polyphenolic content and anti-oxidation activities, and to determine biological activities, including glucose uptake, Glut-2 expression, triglyceride reduction, and wound-healing activity. Our data demonstrated that methanol and water extracts of green and yellow papaya have similar concentrations of polyphenols in skin (10-20 mg/g dry powder), leaf (25-30 mg/g dry powder), and pulp (1-3 mg/g dry powder) fractions. However, both methanol and water extracts of seeds from yellow papaya have substantially higher concentrations of polyphenols compared to green papaya. Both water and methanol extracts of yellow papaya exhibited higher anti-oxidation activity compared to green papaya in skin (50-60%), pulp (200-300%), and seeds (10-800%). Old leaves also showed greater anti-oxidation activity (30-40%) compared to new leaves. Pulp extracts from both yellow and green papaya stimulated greater glucose uptake, but only pulp from green papaya stimulated glucose uptake in muscle cells. Similarly, pulp extract stimulated glucose transporter Glut-2 expression in liver cells. The skin, pulp, and seeds of green or yellow papaya showed triglyceride-lowering activity in liver cells by 60-80%, but samples taken from yellow papaya had a more potent effect. Seeds from both green and yellow papaya significantly stimulated the migration of fibroblasts in the wounded area by 2-2.5-fold compared to the untreated control. Consistent with these data, seeds from both green and yellow papaya also significantly stimulated collagen synthesis in fibroblast cells by almost 3-fold. In conclusion, our data indicate that different parts of papaya produce stimulatory effects on glucose uptake, Glut-2 expression, TG reduction, and wound-healing activities. This study concludes that different parts of the papaya can be beneficial for preventing diabetes and diabetes-related wound healing.


Asunto(s)
Carica , Diabetes Mellitus , Metanol , Polvos , Cicatrización de Heridas , Fibroblastos/metabolismo , Polifenoles/farmacología , Polifenoles/metabolismo , Hígado , Diabetes Mellitus/metabolismo , Mioblastos , Glucosa/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo
15.
Appl Biochem Biotechnol ; 195(12): 7159-7175, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36988843

RESUMEN

The BRCA1 and BRCA2 are genes that encode a protein that ensures the integrity of DNA and prevents the unregulated cells from proliferating. Mutations in the sequence of these genes are associated with the birth of inherited breast cancers. The research for possible human breast cancer treatment remains a vital step in the drug development process. In this study, in silico investigations involving a computational method for the discovery of active phytochemicals from Carica papaya against the BRCA-1 gene were carried out. The in silico studies for these phytochemicals datasets as BRCA-1 breast cancer therapeutic agents showed promising results through pharmacokinetics and pharmacodynamics studies. The Carica papaya compounds were found to follow the rule of five and have good bioavailability. The ADMET and drug-likeness screening score of the identified ligands also recognized their potential as a promising drug candidate against BRCA-1 while the DFT also confirm better biological and chemical reactivity of Carica papaya compounds with excellent intra-molecular charge transfer between electron donor and electron acceptor site. The results of the molecular docking provided useful information on possible target-lead interactions, demonstrating that the newly developed leads showed a high affinity for BRCA-1 targets and might be investigated for further research.


Asunto(s)
Neoplasias de la Mama , Carica , Humanos , Femenino , Extractos Vegetales/química , Neoplasias de la Mama/tratamiento farmacológico , Carica/química , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología
16.
BMC Complement Med Ther ; 23(1): 82, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934258

RESUMEN

Antiretroviral therapy is the only treatment option for HIV-infected patients; however, it has certain drawbacks in terms of developing multiple toxic side effects. Thus, there is a continuous need to explore safe and efficacious anti-retroviral agents. Carica papaya Linn and Psidium guajava are known for their various biological activities. In this study, we characterized the bioactive fractions of methanolic leaves extract from both plants using the High-resolution electrospray ionization mass spectrometry (HR-ESI-MS) technique, followed by the investigation of their potential as anti-HIV-1 and antioxidant agents through in vitro mechanistic assays. The anti-HIV-1 activity was examined in TZM-bl cells through luciferase gene assay against two different clades of HIV-1 strains, whereas the intracellular ROS generation was analyzed by Fluorescence-Activated Cell Sorting. Additionally, the mechanisms of action of these phyto-extracts were determined through the Time-of-addition assay. The characterization of Carica papaya Linn and Psidium guajava leaves extract through HR-ESI-MS fragmentation showed high enrichment of various alkaloids, glycosides, lipids, phenolic compounds, terpenes, and fatty acids like bioactive constituents. Both the phyto-extracts were found to be less toxic and exhibited potent antiviral activity against HIV-1 strains. Furthermore, the phyto-extracts also showed a decreased intracellular ROS in HIV-1 infected cells due to their high antioxidant potential. Overall, our study suggests the anti-HIV-1 potential of Carica papaya Linn and Psidium guajava leaves extract due to the synergistic action of multiple bioactive constituents.


Asunto(s)
Carica , Infecciones por VIH , Psidium , Humanos , Extractos Vegetales/química , Carica/química , Especies Reactivas de Oxígeno , Antioxidantes , Antivirales , Infecciones por VIH/tratamiento farmacológico
18.
Molecules ; 28(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36677632

RESUMEN

Sepsis is a serious health concern globally, which necessitates understanding the root cause of infection for the prevention of proliferation inside the host's body. Phytochemicals present in plants exhibit antibacterial and anti-proliferative properties stipulated for sepsis treatment. The aim of the study was to determine the potential role of Carica papaya leaf extract for sepsis treatment in silico and in vitro. We selected two phytochemical compounds, carpaine and quercetin, and docked them with bacterial proteins, heat shock protein (PDB ID: 4PO2), surfactant protein D (PDB ID: 1PW9), and lactobacillus bacterial protein (PDB ID: 4MKS) against imipenem and cyclophosphamide. Quercetin showed the strongest interaction with 1PW9 and 4MKS proteins. The leaves were extracted using ethanol, methanol, and water through Soxhlet extraction. Total flavonoid content, DPPH assay, HPTLC, and FTIR were performed. In vitro cytotoxicity of ethanol extract was screened via MTT assay on the J774 cell line. Ethanol extract (EE) possessed the maximum number of phytocomponents, the highest amount of flavonoid content, and the maximum antioxidant activity compared to other extracts. FTIR analysis confirmed the presence of N-H, O-H, C-H, C=O, C=C, and C-Cl functional groups in ethanol extract. Cell viability was highest (100%) at 25 µg/mL of EE. The present study demonstrated that the papaya leaves possessed antibacterial and cytotoxic activity against sepsis infection.


Asunto(s)
Carica , Sepsis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proteínas Bacterianas , Carica/química , Simulación del Acoplamiento Molecular , Quercetina , Antibacterianos/farmacología , Fitoquímicos/análisis , Flavonoides , Etanol , Sepsis/tratamiento farmacológico , Hojas de la Planta/química
19.
Int J Biol Macromol ; 233: 123430, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716844

RESUMEN

The problem of environmental plastic contamination is one of the most serious issues facing our world today. The majority of the packaging materials used to preserve food are made of plastic which is considered an environmental issue. Natural kaolinite clay (KC) and Ficus leaf extract (FLE) were combined with chitosan in this work to create a novel antioxidant and biodegradable food packaging film. Chitosan/KC/FLE film was compared to chitosan film, Chitosan/KC, and Chitosan/FLE films in terms of structural, physical, and functional aspects. The addition of FLE and/or KC significantly improved the light and moisture barrier characteristics, mechanical properties, and antioxidant capabilities of chitosan film. Moreover, KC addition had a remarkable impact on the water vapor permeability and the biodegradability of the chitosan film. Because of the synergistic action of FLE and KC, the Chitosan/KC/FLE film delivered strong barrier and antioxidant capabilities. Furthermore, Chitosan/KC/FLE film was tested as packaging material on fresh-cut apple slices and demonstrated good food preservation regarding the weight loss, browning index, and total phenolic content of the fruit. According to our findings, Chitosan/KC/FLE film might be employed as a possible food packaging material in the food industry.


Asunto(s)
Carica , Quitosano , Ficus , Malus , Quitosano/química , Malus/química , Antioxidantes/farmacología , Antioxidantes/química , Embalaje de Alimentos , Arcilla , Caolín , Plásticos , Extractos Vegetales/química
20.
Environ Sci Pollut Res Int ; 30(10): 27815-27832, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36396758

RESUMEN

Several chemicals and medications induce cellular damage in various organs of the body by activating reactive substances' metabolism leading to various pathological conditions including liver disease. In this study, we evaluated the prophylactic and curative effects of Carica papaya Linn. pulp water extract (PE) against CCl4-induced rat hepatotoxicity. Five groups of rats were created, control, PE, CCl4, (PE-CCl4): The rats were administered with PE pre and during CCl4 injection, and (PE-CCl4-PE): The rats were administered with PE pre, during, and after CCl4. The markers of oxidative stress ("OS": oxidant and antioxidants), inflammation [nuclear factor-κB, tumor necrosis factor-α, and interleukin-6], fibrosis [transforming growth factor-ß], and apoptosis [tumor suppressor gene (p53)] were evaluated. Additionally, liver functions, liver histology, and kidney functions were measured. Also, PE characterization was studied. The results showed that PE, in vitro, has a high antioxidant capacity because of the existence of phenolics, flavonoids, tannins, terpenoids, and minerals. Otherwise, the PE administration [groups (PE-CCl4) and (PE-CCl4-PE)] exhibited its prophylactic and therapeutic role versus the hepatotoxicity induced by CCl4 where PE treatment improved liver functions, liver histopathology, and renal functions by decreasing oxidative stress, inflammation, fibrosis, and apoptosis induced by CCl4. Our study elucidated that PE contains high amounts of phenolics, flavonoids, tannins, terpenoids, and ascorbic acid. So, PE exerted significant prophylactic and curative effects against hepatotoxicity induced by CCl4. These were done by enhancing the markers of antioxidants and drug-metabolizing enzymes with reductions in lipid peroxidation, inflammation, fibrosis, and apoptosis. PE administration for healthful rats for 12 weeks had no negative impacts. Consequently, PE is a promising agent for the prohibition and therapy of the toxicity caused by xenobiotics.


Asunto(s)
Carica , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratas , Masculino , Animales , Tetracloruro de Carbono , Carica/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Antioxidantes/metabolismo , Hígado , Estrés Oxidativo , Inflamación/metabolismo , Extractos Vegetales/química , Fibrosis , Taninos/farmacología , Flavonoides/farmacología , Peroxidación de Lípido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA